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Abstract

The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and 

temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component 

degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive 

maintenance known as condition based maintenance has been developed. This method not only monitors the engine 

condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability 

and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based 

diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing 

diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an 

introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical 

gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including 

fuzzy logic, NNs and GA developed by the author are presented.
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deterioration

1. Introduction

The aero gas turbine having expensive, highly precise and 

long lead parts is operated in a severe hostile environment 

of high pressure and temperature gas. Breakdown or 

deterioration of components or parts strongly influences the 

aircraft operation [1-5]. Recently third generation predictive 

maintenance based on engine operating condition has been 

developed instead of the second generation preventive 

maintenance.

It can not only monitor and diagnose the engine condition 

but also give the appropriate maintenance action. Therefore 

it maximizes the availability and minimizes the maintenance 

cost [1]. 

The advanced engine health condition monitoring method 

is classified into the model based method (such as observers, 

parity equations, parameter estimation and Gas Path Analysis 

(GPA)) and the soft computing method (such as expert system, 

fuzzy logic, Neural Networks (NNs) and Genetic Algorithms 

(GA)) [6-7]. 

Among the model based diagnostic methods, the linear 

GPA method was first proposed by Urban in 1967 [8]. While 

GPA has been widely used it is severely limited to use in cases 

of a high level faults [6]. Therefore to improve this limitation 

the non-linear GPA method was developed by Escher [9]. This 

method can solve non-linearity by the repetition technique. 

However, this method does not manage the sensor noise and 

bias problem [6-7]. 

Among the soft computing diagnostic methods, the 

intelligent diagnostic methods such as fuzzy logic, NNs and 

GA have been developed to solve the problems of the model 

based diagnostic methods [1], [6-7]. In 1995, Patel et al. 

studied diagnostics using the SIMULINK model and NNs [10], 

In 1998, Zhou studied diagnostics using fuzzy logic and NNs 
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[11], and in 2000, Tayler studied diagnostics using GA [12]. 

However, Zedda pointed out that NNs training is typically 

performed in cases where the input-output relationship is 

already known and it is very difficult to provide any level of 

confidence on the results obtained through the use of NNs 

[13]. In 2005, Volponi et al. analyzed the recent status of the 

diagnostic system of the aerospace propulsion systems [14], 

and in 2010, Simon developed an on-board integral engine 

performance monitoring and diagnostic system [15]. The GA 

has some distinctive features compared with typical calculus-

based optimization methods; i. e. no derivatives are needed 

so any-non-smooth function can be optimized, constraints 

can be dealt with penalty functions, global search is used to 

avoid becoming stuck in a local minimum, and probabilistic 

rather than deterministic transition rules are used to create 

the next generation of strings from the current generation [6-

7], [16-17]. Recently, Kong et al. studied a diagnostic system 

considering the sensor noise and bias of a two spool turbofan 

engine using the GA method [18].

The engine health monitoring techniques using the 

model based method requires the performance simulation 

program. In order to simulate gas turbine performance, it is 

necessary that a condition, in which each engine must follow 

its own component characteristics, should be satisfied [19].

Generally, in order to simulate performance similar to 

that of a real engine, major component maps should be used 

through component rig tests. However, component maps 

of most commercial engines are not released even to the 

purchaser because those are treated by the manufacturer’ as 

an important propriety. Therefore most research engineers, 

who are studying the performance simulation of the gas 

turbine, use scaled maps based on the design point from 

the known and limited component maps [21]. However, the 

scaling method is only available if it uses very similar maps to 

the real engine. If similar maps were not used to simulate the 

engine, the simulated performance may differ considerably 

from the real engine performance at off-design conditions [20-

23]. In order to overcome the above mentioned difficulties, 

Kong et al. proposed a map generation method called the 

system identification method using partially given operation 

performance data from the engine manufacturer; they could 

improve the traditional scaling methods by multiplying the 

scaling factors at the design point to off-design point data of 

the original performance maps [20]. However, this technique 

has a limitation on generation of component maps for the 

engine performance simulation at various operational 

conditions. In addition, Kong et al. recently proposed a 

new map generation method obtained by applying genetic 

algorithms to random test data or performance deck data. 

They therefore showed the possibility of composing the 

component maps from some random performance data [22]. 

The performance simulation is classified into the steady 

state performance simulation and the dynamic performance 

simulation. The performance simulation programs are used 

not only for precisely estimating the engine performance, 

but also for monitoring the engine condition and building 

the dynamic model of the engine controller. The DYNGEN 

was developed as a program for calculating the steady-state 

and transient performance of turbojet and turbofan engines 

using FORTRAN language by Seller et al. [24], and Fawke 

developed a simulation program of gas turbine dynamic 

behaviors [25] while Seldner et al. used a generalized 

simulation technique for turbojet engine system analysis 

[26]. Recently generalized computer programs have been 

developed for simulating the performance of various types of 

gas turbines as well as arbitrary gas turbines [27-29]. Kurzke 

has developed a commercial program GASTURB [21]. Kong 

et al. have developed the use of engine condition monitoring 

programs due to component performance degradations [30-

33].

 

2. Advanced diagnostic methods

2.1 Gas Path Analysis (GPA) Method

The GPA method first developed by Urban [8, 34] is used 

to evaluate the component based health condition using the 

performance simulation program. 

If any effect of measurement uncertainty is neglected, for 

a given engine operating point the basic equation for gas 

turbine performance can be expressed as follows [1, 35]: 
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and h is a vector-valued function, usually 
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It is provided by the performance 
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Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 
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parameters can be calculated using a fault 
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inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

(1)

where 

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

 is the measurement vector and M is the number 

of measurements, 

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

 is the component parameter vector, 

N is the number of component parameters, and h is a vector-

valued function, usually non-linear. 

It is provided by the performance simulation model.

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1

(2)

Equation (1) can be expanded in a Taylor series. Small, 

higher order terms of expansion can be neglected. 

The deviation of engine component parameters can be 

calculated using a fault matrix (or diagnostic matrix) which 

is the inverse of the influence coefficient matrix H:

 

improve the traditional scaling methods by 

multiplying the scaling factors at the 

design point to off-design point data of 

the original performance maps [20]. 

However, this technique has a limitation 

on generation of component maps for the 

engine performance simulation at various 

operational conditions. In addition, Kong 

et al. recently proposed a new map 

generation method obtained by applying 

genetic algorithms to random test data or 

performance deck data. They therefore 

showed the possibility of composing the 

component maps from some random 

performance data [22].  

The performance simulation is 

classified into the steady state 

performance simulation and the dynamic 

performance simulation. The performance 

simulation programs are used not only for 

precisely estimating the engine 

performance, but also for monitoring the 

engine condition and building the dynamic 

model of the engine controller. The 

DYNGEN was developed as a program for 

calculating the steady-state and transient 

performance of turbojet and turbofan 

engines using FORTRAN language by 

Seller et al. [24], and Fawke developed a 

simulation program of gas turbine dynamic 

behaviors [25], while Seldner et al. used 

a generalized simulation technique for 

turbojet engine system analysis [26]. 

Recently, generalized computer programs 

have been developed for simulating the 

performance of various types of gas 

turbines as well as arbitrary gas turbines 

[27-29]. Kurzke has developed a 

commercial program, GASTURB [21]. 

Kong et al. have developed the use of 

engine condition monitoring programs due 

to component performance degradations 

[30-33]. 

  
 

 

2. Advanced diagnostic 

methods 

2.1 Gas Path Analysis (GPA) Method 

The GPA method first developed by 

Urban [8, 34] is used to evaluate the 

component based health condition using 

the performance simulation program.  

If any effect of measurement 

uncertainty is neglected, for a given 

engine operating point the basic equation 

for gas turbine performance can be 

expressed as follows [1, 35]:  

           = h ( )                                 (1) 

 

where =RM is the measurement vector 

and M is the number of measurements, 

=RN is the component parameter vector, 

N is the number of component parameters, 

and h is a vector-valued function, usually 

non-linear.  

It is provided by the performance 

simulation model. 

(  ) = h-1                     (2) 

Equation (1) can be expanded in a 

Taylor series. Small, higher order terms 

of expansion can be neglected  

The deviation of engine component 

parameters can be calculated using a fault 

matrix (or diagnostic matrix) which is the 

inverse of the influence coefficient matrix 

H: 

                         (3) 

The inverse of the influence 

coefficient matrix is referred to as "Fault 

Coefficient Matrix" (FCM) [35].  

Equation (3) is called as the 

governing equation of Linear GPA. The 

Z


X


Z


X


X Z


ZHX


  *1 (3)

The inverse of the influence coefficient matrix is referred 

to as “Fault Coefficient Matrix” (FCM) [35]. 



125

Changduk Kong    Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods ...

http://ijass.org

Equation (3) is called as the governing equation of Linear 

GPA. The Linear GPA is clearly a very powerful tool for 

analyzing the health of gas turbines. However, it has a severe 

limitation whereby in many circumferences the level of error 

introduced by the assumption of the linear model can be of 

the same order of magnitude as the fault being analyzed [6]. 

One way of improving the accuracy is to try to solve 

the non-linear relationship between dependent and 

independent parameters with an iterative method such as 

the Newton-Raphson method [9].  

The relationship between the engine measurement 

(dependent) parameter deviation vector and the component 

(independent) parameter vector described by Equation (3) 

is re-written as follows for convenience:
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where M is the number of measurements, 

 

Linear GPA is clearly a very powerful tool 

for analyzing the health of gas turbines. 

However, it has a severe limitation 

whereby in many circumferences the level 

of error introduced by the assumption of 

the linear model can be of the same order 

of magnitude as the fault being analyzed 

[6].  

One way of improving the accuracy 

is to try to solve the non-linear 

relationship between dependent and 

independent parameters with an iterative 

method such as the Newton-Raphson 

method [9].   
The relationship between the 

engine measurement (dependent) 

parameter deviation vector and the 

component (independent) parameter 

vector described by Equation (3) is re-

written as follows for convenience: 

                         (4) 

The corrections are then added to 

the solution vector:  

                    (5) 

and the process is iterated to 

convergence. This iterative process, 

called the Non-linear GPA, has the 

advantage of overcoming the problem 

whereby the changes in  need to be 

small. In other words, the process seeks 

to solve numerically the non-linear set of 

equations defined in Equation (1). Escher 

proposed a percentage of the change in 

the independent parameter as typically 66% 

to improve the accuracy in the iteration 

process [9].  

Through each interval, the change 

in the independent parameter becomes 

increasingly smaller and the process can 

be stopped when the change in the 

independent parameter has reached a 

convergence criterion that suits the needs 

[36]:  

 

  (6) 

wwhere M is the 

number of measurements, is the 

actual deteriorated measured parameter 

vector, is the calculated deteriorated 

measured parameter vector that is based 

on the detected component parameter 

vector , and is the convergence 

criteria. 

Based on the GPA method, in 1987 

Rolls-Royce developed a COMPASS 

diagnostic system [37], in 1991 Pratt & 

Whitney developed the SHERLOCK 

diagnostic system [38], and in 1994 

General Electric developed the TEMPER 

diagnostic system [39]. 

 

 

2.2. Kalman Filter (KF) method 

The Kalman Filter (KF) is used to 

obtain a recursive solution to the linear 

filtering problem first developed by 

Kalman [40]. The KF is an optimal 

recursive data processing algorithm used 

to estimate the health of the engine 

components in the presence of 

measurement noise and sensor bias [41-

43]. A KF processes all available 

measurement data and prior knowledge 

about the system to produce an estimate 

of the desired variables with the 

statistically minimized error. The KF 

based linear algorithm involves a 

prediction step and the correction step. 

The Kalman filters for the non-linear 

systems are the Extended Kalman Filter 

(EKF) and the iterated Extended Kalman 

Filter (IEKF). 

2.3 Neural Networks (NNs) method 

Work on the artificial neural 

network has been motivated from its 

inception by the recognition that the 

human brain computes data in an entirely 

different way to that of the conventional 

ZHX


  *1

XXX oldnew




X


measZ


calZ


X


 

 
M

j
caljmeasjsum ZZZ 



 is the actual 

deteriorated measured parameter vector, 

 

Linear GPA is clearly a very powerful tool 

for analyzing the health of gas turbines. 

However, it has a severe limitation 

whereby in many circumferences the level 

of error introduced by the assumption of 

the linear model can be of the same order 

of magnitude as the fault being analyzed 

[6].  

One way of improving the accuracy 

is to try to solve the non-linear 

relationship between dependent and 

independent parameters with an iterative 

method such as the Newton-Raphson 

method [9].   
The relationship between the 

engine measurement (dependent) 

parameter deviation vector and the 

component (independent) parameter 

vector described by Equation (3) is re-

written as follows for convenience: 

                         (4) 

The corrections are then added to 

the solution vector:  

                    (5) 

and the process is iterated to 

convergence. This iterative process, 

called the Non-linear GPA, has the 

advantage of overcoming the problem 

whereby the changes in  need to be 

small. In other words, the process seeks 

to solve numerically the non-linear set of 

equations defined in Equation (1). Escher 

proposed a percentage of the change in 

the independent parameter as typically 66% 

to improve the accuracy in the iteration 

process [9].  

Through each interval, the change 

in the independent parameter becomes 

increasingly smaller and the process can 

be stopped when the change in the 

independent parameter has reached a 

convergence criterion that suits the needs 

[36]:  

 

  (6) 

wwhere M is the 

number of measurements, is the 

actual deteriorated measured parameter 

vector, is the calculated deteriorated 

measured parameter vector that is based 

on the detected component parameter 

vector , and is the convergence 

criteria. 

Based on the GPA method, in 1987 

Rolls-Royce developed a COMPASS 

diagnostic system [37], in 1991 Pratt & 

Whitney developed the SHERLOCK 

diagnostic system [38], and in 1994 

General Electric developed the TEMPER 

diagnostic system [39]. 

 

 

2.2. Kalman Filter (KF) method 

The Kalman Filter (KF) is used to 

obtain a recursive solution to the linear 

filtering problem first developed by 

Kalman [40]. The KF is an optimal 

recursive data processing algorithm used 

to estimate the health of the engine 

components in the presence of 

measurement noise and sensor bias [41-

43]. A KF processes all available 

measurement data and prior knowledge 

about the system to produce an estimate 

of the desired variables with the 

statistically minimized error. The KF 

based linear algorithm involves a 

prediction step and the correction step. 

The Kalman filters for the non-linear 

systems are the Extended Kalman Filter 

(EKF) and the iterated Extended Kalman 

Filter (IEKF). 

2.3 Neural Networks (NNs) method 

Work on the artificial neural 

network has been motivated from its 

inception by the recognition that the 

human brain computes data in an entirely 

different way to that of the conventional 

ZHX


  *1

XXX oldnew




X


measZ


calZ


X


 

 
M

j
caljmeasjsum ZZZ 



 is the calculated 

deteriorated measured parameter vector that is based on 

the detected component parameter vector, 

 

Linear GPA is clearly a very powerful tool 

for analyzing the health of gas turbines. 

However, it has a severe limitation 

whereby in many circumferences the level 

of error introduced by the assumption of 

the linear model can be of the same order 

of magnitude as the fault being analyzed 

[6].  

One way of improving the accuracy 

is to try to solve the non-linear 

relationship between dependent and 

independent parameters with an iterative 

method such as the Newton-Raphson 

method [9].   
The relationship between the 

engine measurement (dependent) 

parameter deviation vector and the 

component (independent) parameter 

vector described by Equation (3) is re-

written as follows for convenience: 

                         (4) 

The corrections are then added to 

the solution vector:  

                    (5) 

and the process is iterated to 

convergence. This iterative process, 

called the Non-linear GPA, has the 

advantage of overcoming the problem 

whereby the changes in  need to be 

small. In other words, the process seeks 

to solve numerically the non-linear set of 

equations defined in Equation (1). Escher 

proposed a percentage of the change in 

the independent parameter as typically 66% 

to improve the accuracy in the iteration 

process [9].  

Through each interval, the change 

in the independent parameter becomes 

increasingly smaller and the process can 

be stopped when the change in the 

independent parameter has reached a 

convergence criterion that suits the needs 

[36]:  

 

  (6) 

wwhere M is the 

number of measurements, is the 

actual deteriorated measured parameter 

vector, is the calculated deteriorated 

measured parameter vector that is based 

on the detected component parameter 

vector , and is the convergence 

criteria. 

Based on the GPA method, in 1987 

Rolls-Royce developed a COMPASS 

diagnostic system [37], in 1991 Pratt & 

Whitney developed the SHERLOCK 

diagnostic system [38], and in 1994 

General Electric developed the TEMPER 

diagnostic system [39]. 

 

 

2.2. Kalman Filter (KF) method 

The Kalman Filter (KF) is used to 

obtain a recursive solution to the linear 

filtering problem first developed by 

Kalman [40]. The KF is an optimal 

recursive data processing algorithm used 

to estimate the health of the engine 

components in the presence of 

measurement noise and sensor bias [41-

43]. A KF processes all available 

measurement data and prior knowledge 

about the system to produce an estimate 

of the desired variables with the 

statistically minimized error. The KF 

based linear algorithm involves a 

prediction step and the correction step. 

The Kalman filters for the non-linear 

systems are the Extended Kalman Filter 

(EKF) and the iterated Extended Kalman 

Filter (IEKF). 

2.3 Neural Networks (NNs) method 

Work on the artificial neural 

network has been motivated from its 

inception by the recognition that the 

human brain computes data in an entirely 

different way to that of the conventional 

ZHX


  *1

XXX oldnew




X


measZ


calZ


X


 

 
M

j
caljmeasjsum ZZZ 



 and 

 

Linear GPA is clearly a very powerful tool 

for analyzing the health of gas turbines. 

However, it has a severe limitation 

whereby in many circumferences the level 

of error introduced by the assumption of 

the linear model can be of the same order 

of magnitude as the fault being analyzed 

[6].  

One way of improving the accuracy 

is to try to solve the non-linear 

relationship between dependent and 

independent parameters with an iterative 

method such as the Newton-Raphson 

method [9].   
The relationship between the 

engine measurement (dependent) 

parameter deviation vector and the 

component (independent) parameter 

vector described by Equation (3) is re-

written as follows for convenience: 

                         (4) 

The corrections are then added to 

the solution vector:  

                    (5) 

and the process is iterated to 

convergence. This iterative process, 

called the Non-linear GPA, has the 

advantage of overcoming the problem 

whereby the changes in  need to be 

small. In other words, the process seeks 

to solve numerically the non-linear set of 

equations defined in Equation (1). Escher 

proposed a percentage of the change in 

the independent parameter as typically 66% 

to improve the accuracy in the iteration 

process [9].  

Through each interval, the change 

in the independent parameter becomes 

increasingly smaller and the process can 

be stopped when the change in the 

independent parameter has reached a 

convergence criterion that suits the needs 

[36]:  

 

  (6) 

wwhere M is the 

number of measurements, is the 

actual deteriorated measured parameter 

vector, is the calculated deteriorated 

measured parameter vector that is based 

on the detected component parameter 

vector , and is the convergence 

criteria. 

Based on the GPA method, in 1987 

Rolls-Royce developed a COMPASS 

diagnostic system [37], in 1991 Pratt & 

Whitney developed the SHERLOCK 

diagnostic system [38], and in 1994 

General Electric developed the TEMPER 

diagnostic system [39]. 

 

 

2.2. Kalman Filter (KF) method 

The Kalman Filter (KF) is used to 

obtain a recursive solution to the linear 

filtering problem first developed by 

Kalman [40]. The KF is an optimal 

recursive data processing algorithm used 

to estimate the health of the engine 

components in the presence of 

measurement noise and sensor bias [41-

43]. A KF processes all available 

measurement data and prior knowledge 

about the system to produce an estimate 

of the desired variables with the 

statistically minimized error. The KF 

based linear algorithm involves a 

prediction step and the correction step. 

The Kalman filters for the non-linear 

systems are the Extended Kalman Filter 

(EKF) and the iterated Extended Kalman 

Filter (IEKF). 

2.3 Neural Networks (NNs) method 

Work on the artificial neural 

network has been motivated from its 

inception by the recognition that the 

human brain computes data in an entirely 

different way to that of the conventional 

ZHX


  *1

XXX oldnew




X


measZ


calZ


X


 

 
M

j
caljmeasjsum ZZZ 



 is the 

convergence criteria.

Based on the GPA method, in 1987 Rolls-Royce developed 

a COMPASS diagnostic system [37], in 1991 Pratt & Whitney 

developed the SHERLOCK diagnostic system [38], and in 

1994 General Electric developed the TEMPER diagnostic 

system [39].

2.2. Kalman Filter (KF) method

The Kalman Filter (KF) is used to obtain a recursive solution 

to the linear filtering problem first developed by Kalman  [40]. 

The KF is an optimal recursive data processing algorithm 

used to estimate the health of the engine components in 

the presence of measurement noise and sensor bias [41-43]. 

A KF processes all available measurement data and prior 

knowledge about the system to produce an estimate of the 

desired variables with the statistically minimized error. The 

KF based linear algorithm involves a prediction step and 

the correction step. The Kalman filters for the non-linear 

systems are the Extended Kalman Filter (EKF) and the 

iterated Extended Kalman Filter (IEKF).

2.3 Neural Networks (NNs) method

Work on the artificial neural network has been motivated 

from its inception by the recognition that the human brain 

computes data in an entirely different way to that of the 

conventional digital computer. A neural network can be 

defined as a massively parallel distributed processor made 

up of simple processing units, which has a natural propensity 

for storing experimental knowledge and making it available 

for use. Neural Networks (NNs) or Artificial Neural Net 

Works (ANNs) have been applied in aerospace propulsion 

diagnostics [44, 45]. 

The following definitions apply to the most commonly 

used neural network. The network is made of units called 

neurons, each performing a weighted sum of its own inputs. 

The sum is then passed through a function, the so called 

activation function, which is usually non-linear [1, 44, 45, 

46]. The output of the j-th neuron is:
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where j
  is the activation function 
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 as in Equation 

(7)) are used to store the knowledge which is acquired by the 

network through a learning process, during which proper 

algorithms change the values of the weights. When training 

is over, the weights are fixed and the net can be used in the so 

called recall mode.

Neurons are usually grouped in layers depending on 

the type of architecture and learning algorithm. Normally, 

a neural network has an input layer, one or more hidden 

layers, and an output layer. A typical configuration of neural 

networks is shown in Fig. 1. The selection of neural network 

configuration is based on a specific application and previous 

experience.

Among the various neural algorithms, back propagation 

is one of the most common, simple and effective for training 

feed forward NNs [1, 47]. The concept  of the algorithm is 

illustrated in Fig. 2.
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inputs used as an argument of the activation function): 
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can be isolated with FFBP NNs as shown 
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in the output layer. The number of 

neurons in the output layer equals the 
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Each of the neurons corresponds to 

one of the components to be detected and 

indicates a faulty component with “0” or 

no fault component with “1”. The neural 

network is trained with different types of 

samples. Multiple component fault 

detection is also possible. Gas turbine 

component faults can be quantified with 

FFBP NNs. Figure 3 (3rd stage) shows an 
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the output layer is equal to the number of 

gas turbine component parameters, where 
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trained and used in the application, it will 

provide the component parameter 
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The single NN has limited capability 
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as gas turbine diagnostics. Therefore, a 

nested NN system is necessary and an 

example of such a system is shown in Fig. 
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programs using NNs have been developed 
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be used for gas turbine diagnostics purposes.

A number of gas turbine diagnostic programs using NNs 

have been developed [47-49].

Typical examples are listed below but are not discussed 

here except for the first program: feed forward-back 

propagation neural networks, Probabilistic neural networks, 

Self-organizing map (SOM), Learning vector quantization 

networks (LVQ), Counter propagation networks (CPN), 

Adaptive resonance theory networks (ART), Resource 

allocation networks (RAN), and Recurrent Cascade 

correlation neural networks (RCC) [6-7].

2.4 Bayesian-Belief Network (BBN) method

The BBN is a method used for fault identification of gas 

turbines based on formal probability theory. It is a system 

that integrates test measurements and gas path analysis 

program results with information regarding operational 

history and direct physical observation helping to acquire a 

cost effective diagnosis and using the value of information 

calculations [50-51]. 

2.5 Genetic Algorithms (GA) method

The GA is a stochastic algorithm of which search methods 

model some natural phenomena such as: genetic inheritance 

and Darwinian strive for survival. The idea behind genetic 

algorithms is to mimic nature [16].

The GA is applied as an effective optimization tool to 

obtain a set of component parameters that produce a set of 

predicted dependant parameters, through a nonlinear gas 

turbine model that leads to predictions that best match the 

measurements [6-7].

In the presence of measurement noise and bias, the 

following relationship for gas turbine component parameters 

and gas path measurement parameters would hold, as 

described previously [7]:
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where j  is the standard deviation of the 

j-th measurement. 

The idea of gas turbines fault 

diagnosis with genetic algorithm is shown 

in Figure 4. With an initial guess of gas 

turbine component parameter vector, the 

engine model provides a predicted 

performance mea X


measurement vector 
Z

. An optimization approach is applied to 

minimize an objective function. A 

minimization of the objective is carried out 

iteratively until the best predicted engine 

component parameter vector X


for real 
X


is obtained. 

The objective function is a measure 

of the difference between the real 

measurement vector Z


and the predicted 

measurement vector Z


. The basic 

requirements for the objective function 

are as follows: It should be a measure of 

the consistency between actual and 

predicted measurements, measurement 

noise should be accounted for, 

measurement biases should be accounted 

for, its minimization should reduce the 

"smearing" effect, and evaluation of the 

function should not be too burdensome 

from a computational point of view. 
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The idea of gas turbines fault 
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shown in Fig. 4. With an initial estimation 
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vector , the engine model provides a 

predicted performance measurement 

vector .  An optimization approach is 

applied to minimize an objective function. 

A minimization of the objective is carried 

out iteratively until the best predicted 

engine component parameter vector for 

real is obtained. 

The objective function is a measure 

of the difference between the real 

measurement vector and the predicted 

measurement vector . The basic 

requirements for the objective function 

are as follows: It should be a measure of 

the consistency between actual and 

predicted measurements, measurement 

noise should be accounted for, 

measurement biases should be accounted 

for, its minimization should reduce the 

"smearing" effect, and evaluation of the 

function should not be too burdensome, 

considering computational factors. 
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would be, given a certain operating point: 
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. The basic requirements for the 

objective function are as follows: It should be a measure of the 

consistency between actual and predicted measurements, 

measurement noise should be accounted for, measurement 

biases should be accounted for, its minimization should 

reduce the “smearing” effect, and evaluation of the function 

should not be too burdensome, considering computational 

factors.

A choice for the objective function would be, given a 

certain operating point:
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 can be found to correspond to the predicted 

measurements fitting sufficiently well with the real 

measurements. The problem can be overcome by elimination 

in the summation of the objective function of the Mbias 

terms corresponding to the biased measurements. Then the 

remaining terms are mutually consistent and the optimized 

function 
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where P is the number of environment and power setting 

parameters and Nperf is the number of component 

performance parameters.

Some gas turbine diagnostic programs using GA have 

been developed [12, 18, 48].

2.6 Expert Systems

An expert system is a computer program that represents 

and reasons with knowledge of some specialist subject 

with a view to solving problems or giving advice [6, 7]. It is 

usually built by assembling a knowledge base which is then 

interpreted by an inference engine. An empty knowledge 

base comes from a program called a shell. The end user of 

the application interacts with the shell via the inference 

engine, which uses the knowledge input to the knowledge 

base to answer questions, solve problems, or offer advice. 

The configuration of a typical expert system is shown in Fig. 

5.

Different expert systems have previously been developed, 

such as rule-based, model-based and case-based systems. 

The most popular types of expert systems used in gas turbine 

fault diagnostics is knowledge and rule based expert systems.

Typical examples of such systems are TEXMAS for 

Lycoming T53 engines, HELIX for twin engine gas turbine 

helicopter engines and SHERLOCK for helicopter engines, 

etc. [38].

Expert systems can also deal with problems involving 

uncertainty by using probability theory, fuzzy logic and 

belief functions.

2.7 Fuzzy Logic

Fuzzy logic is a method used to formalize the human 

capability of imprecise reasoning. Such reasoning represents 

the human ability to reason approximately and judge under 

uncertainty [6, 7, 52]. It provides a system of non-linear 

mapping from an input vector into a scalar output. The typical 

fuzzy logic system shown in Fig. 6 involves fuzzification, 

fuzzy inference and defuzzification by using a fuzzifier, an 

inference engine and a defuzzifier respectively. A fuzzifier 

maps crisp input numbers into fuzzy sets characterized by 

linguistic variables and membership functions. An inference 

engine maps fuzzy sets to fuzzy sets and determines the 

way in which the fuzzy sets are combined. A defuzzifier 

is sometimes used when crisp numbers are needed as an 

output of the fuzzy logic system. Fuzzy expert systems have 

previously been applied to gas turbine diagnostics.

A number of gas turbine diagnostic programs using Fuzzy 

Logic have been developed [53-55].

3. ��Application examples of advanced diag-
nostic methods

Following practical gas turbine health monitoring 

application examples using the GPA methods and the 

artificial intelligent methods including fuzzy logic, the NNs 

and GA developed by the author are presented.

3.1 Application example using Linear and Non-lin-
ear GPA

The selected engine for diagnostic application using GPA 

is the PT6-62 free-turbine type turboprop engine shown in 

Fig. 7 [56]. The maximum thermodynamic shaft horsepower 

is 1150 hp at sea level and static standard condition, but the 

flat rated power is at 950 hp. The engine has a compressor 

with three axial stages and a single centrifugal stage, a 

reverse flow combustor, a single stage compressor turbine 

with cooled NGV and blades and an un-cooled two stage 

power turbine.  

A program for steady state performance simulation and 

diagnostics of the turboprop engine (PT6A-62), which is a 
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power plant of the first indigenous military basic trainer KT-1 

in the Republic of Korea, was developed [31].

In order to simulate the engine degradation effect, 

compressor fouling and turbine erosion are chosen, since 

they are likely to be the most common source of degradation 

in gas turbine engines. Compressor fouling leads to a 

decrease in compressor mass flow and isentropic efficiency, 

and turbine erosion leads to an increase in turbine mass flow 

and a decrease in isentropic efficiency. 

In this study, the simultaneous multiple faults of the 

compressor, gas generator turbine and power turbine are 

assumed. The rotational speeds of the gas generator turbine 

and power turbine were assumed to be 100%. The uninstalled 

condition at sea level, standard atmospheric and static 

condition were considered. For analyzing the performance 

degradation rate caused by compressor fouling and turbine 

corrosion, the parametric study with 3 cases is shown in Table 

2, and the parametric study for selection of the measurement 

parameters with 10 cases is shown in Table 3. 

The analysis results obtained by linear GPA were compared 

with those obtained by non-linear GPA. Furthermore non-

linear GPA analysis was carried out by using an iterative 

scheme, of which the performance degradation rate of 

independent parameters was divided into the same intervals, 

i.e., 
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is a power plant of the first indigenous 
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Republic of Korea, was developed [31]. 

In order to simulate the engine 

degradation effect, compressor fouling 

and turbine erosion are chosen, since they 

are likely to be the most common source 
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Compressor fouling leads to a decrease in 
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compressor fouling and turbine corrosion, 
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parameters with 10 cases is shown in 

Table 3.  
The analysis results obtained by linear 
GPA were compared with those obtained 
by non-linear GPA. Furthermore, non-
linear GPA analysis was carried out by 
using an iterative scheme, of which the 
performance degradation rate of 
independent parameters was divided into 
the same intervals, i.e., =1. This was =1. This was compared with the analysis result obtained 

by Escher’s scheme, i.e., 

 

3. Application examples of 

advanced diagnostic methods 
Following practical gas turbine 

health monitoring application examples 

using the GPA methods and the artificial 

intelligent methods, including fuzzy logic, 

the NNs and GA developed by the author 

are presented. 

3.1 Application example using Linear 
and Non‐linear GPA 

The selected engine for diagnostic 

application using GPA is the PT6-62 

free-turbine type turboprop engine 

shown in Fig. 7 [56]. The maximum 

thermodynamic shaft horsepower is 1150 

hp at sea level and static standard 

condition, but the flat rated power is at 

950 hp. The engine has a compressor 

with three axial stages and a single 

centrifugal stage, a reverse flow 

combustor, a single stage compressor 

turbine with cooled NGV and blades, and 

an un-cooled two stage power turbine.   
 

 
Fig. 7.  PWC PT6A-62 turboprop engine 

 

 

Table 1 shows the reference data 

provided by the engine manufacturer [57]. 
 

TABLE 1: Performance data by engine 

manufacturer 

Variable values 

Atmospheric condition S/L Static Standard  

Mass flow rate (kg/s) 3.818 

Compressor pressure ratio 8.6 

Fuel flow rate (kg/s) 0.0818 

Shaft horse power (hp) 1150 

S.F.C (kg/kWhr) 0.3433 

Nozzle throat area (m2) 0.058 

Gas generator speed (100% rpm) 36200 

Propeller speed (100% rpm) 2000 

 

A program for steady state 

performance simulation and diagnostics of 

the turboprop engine (PT6A-62), which 

is a power plant of the first indigenous 

military basic trainer KT-1 in the 

Republic of Korea, was developed [31]. 

In order to simulate the engine 

degradation effect, compressor fouling 

and turbine erosion are chosen, since they 

are likely to be the most common source 

of degradation in gas turbine engines. 

Compressor fouling leads to a decrease in 

compressor mass flow and isentropic 

efficiency, and turbine erosion leads to an 

increase in turbine mass flow and a 

decrease in isentropic efficiency.  

In this study, the simultaneous 

multiple faults of the compressor, gas 

generator turbine, and power turbine are 

assumed. The rotational speeds of the gas 

generator turbine and power turbine were 

assumed to be 100%. The uninstalled 

condition at sea level, standard 

atmospheric, and static condition were 

considered. For analyzing the 

performance degradation rate caused by 

compressor fouling and turbine corrosion, 

the parametric study with 3 cases is 

shown in Table 2, and the parametric 

study for selection of the measurement 

parameters with 10 cases is shown in 

Table 3.  
The analysis results obtained by linear 
GPA were compared with those obtained 
by non-linear GPA. Furthermore, non-
linear GPA analysis was carried out by 
using an iterative scheme, of which the 
performance degradation rate of 
independent parameters was divided into 
the same intervals, i.e., =1. This was =0.66 [9].

The analysis results for case 1, case 2, and case 3 are 

shown in Fig. 8, respectively. In this investigation, it 

was found that nonlinear GPA with the same interval 

performance degradation rate of independent parameters 

is less effective than linear GPA. However the non-linear 

GPA method is considerably better than the linear GPA 

method when the performance degradation is large. In 

addition, it was found that results that are more accurate 

can be obtained if the larger number of the measurement 

parameters is selected.

However, when a specific set of measurement parameters 

is selected, the error can dramatically increase. Therefore 

if we can properly select the measurement parameters, an 

economic and reliable fault detection can be realized.

 

3. Application examples of 

advanced diagnostic methods 
Following practical gas turbine 

health monitoring application examples 

using the GPA methods and the artificial 

intelligent methods, including fuzzy logic, 

the NNs and GA developed by the author 

are presented. 

3.1 Application example using Linear 
and Non‐linear GPA 

The selected engine for diagnostic 

application using GPA is the PT6-62 

free-turbine type turboprop engine 

shown in Fig. 7 [56]. The maximum 

thermodynamic shaft horsepower is 1150 

hp at sea level and static standard 

condition, but the flat rated power is at 

950 hp. The engine has a compressor 

with three axial stages and a single 

centrifugal stage, a reverse flow 

combustor, a single stage compressor 

turbine with cooled NGV and blades, and 

an un-cooled two stage power turbine.   
 

 
Fig. 7.  PWC PT6A-62 turboprop engine 

 

 

Table 1 shows the reference data 

provided by the engine manufacturer [57]. 
 

TABLE 1: Performance data by engine 

manufacturer 

Variable values 

Atmospheric condition S/L Static Standard  

Mass flow rate (kg/s) 3.818 

Compressor pressure ratio 8.6 

Fuel flow rate (kg/s) 0.0818 

Shaft horse power (hp) 1150 

S.F.C (kg/kWhr) 0.3433 

Nozzle throat area (m2) 0.058 

Gas generator speed (100% rpm) 36200 

Propeller speed (100% rpm) 2000 

 

A program for steady state 

performance simulation and diagnostics of 

the turboprop engine (PT6A-62), which 

is a power plant of the first indigenous 

military basic trainer KT-1 in the 

Republic of Korea, was developed [31]. 

In order to simulate the engine 

degradation effect, compressor fouling 

and turbine erosion are chosen, since they 

are likely to be the most common source 

of degradation in gas turbine engines. 

Compressor fouling leads to a decrease in 

compressor mass flow and isentropic 

efficiency, and turbine erosion leads to an 

increase in turbine mass flow and a 

decrease in isentropic efficiency.  

In this study, the simultaneous 

multiple faults of the compressor, gas 

generator turbine, and power turbine are 

assumed. The rotational speeds of the gas 

generator turbine and power turbine were 

assumed to be 100%. The uninstalled 

condition at sea level, standard 

atmospheric, and static condition were 

considered. For analyzing the 

performance degradation rate caused by 

compressor fouling and turbine corrosion, 

the parametric study with 3 cases is 

shown in Table 2, and the parametric 

study for selection of the measurement 

parameters with 10 cases is shown in 

Table 3.  
The analysis results obtained by linear 
GPA were compared with those obtained 
by non-linear GPA. Furthermore, non-
linear GPA analysis was carried out by 
using an iterative scheme, of which the 
performance degradation rate of 
independent parameters was divided into 
the same intervals, i.e., =1. This was 

Fig. 7. PWC PT6A-62 turboprop engine

Table 1. ��Shows the reference data provided by the engine 
manufacturer [57].Review 2 

TABLE 1: Performance data by engine manufacturer 
Variable values 

Atmospheric condition S/L Static Standard  

Mass flow rate (kg/s) 3.818 

Compressor pressure ratio 8.6 

Fuel flow rate (kg/s) 0.0818 

Shaft horse power (hp) 1150 

S.F.C (kg/kWhr) 0.3433 

Nozzle throat area (m2) 0.058 

Gas generator speed (100% rpm) 36200 

Propeller speed (100% rpm) 2000 

TABLE 2: Causes of performance deterioration and degradation rates 

Case Source of deterioration Degradation rates 

Case I 

Compressor fouling  = -2 %    
= -1% 

Comp. turbine erosion  = +1%   
= -1% 

Power turbine erosion  = +1%    
= -1% 

Case II 

Compressor fouling  = -3%    
= -2% 

Comp. turbine erosion  = +2%    
= -2% 

Power turbine erosion  = +2%    
= -2% 

Case III 

Compressor fouling  = -5%    
= -3% 

Comp. turbine erosion  = +3%    
= -3% 

Power turbine erosion  = +3%    
= -3% 
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Comp. Fouling & Comp. turbine erosion 

& Power turbine erosion 
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TABLE 7: Measured parameter changes due to implanted faults (%) 

MPC 

FC 
∆ITT ∆EGT ∆MF ∆TRQ 

FC1 7.435 8.067 8.571 2.446 

FC2 7.817 7.027 14.367 8.231 

FC3 -3.051 -0.933 -4.408 -6.078 

FC4 14.385 14.072 21.714 10.588 

FC5 5.196 7.226 5.959 -0.762 

FC6 5.463 6.372 10.531 3.643 

FC7 19.986 21.518 27.755 10.456 
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Table 2. Competing aircraft specifications 

 

 
 

Parameter Q400 ATR72 

 

 
Introduction 2000 1989 

Passengers 74@31″ 68@31″ 
Range 

(typical pax) 1,125nm 890nm 

Cruise speed 360knots 276knots 

MTOW 64,500lb 49,600lb 

Table 3. Selection of dependent variablesTABLE 3. Selection of dependent variables 

 1 2 3 4 5 6 7 8 9 10

SHP          

MF          

P2          

T2          

P3           

T3           

P4          

T4           

P5           

T5           

 

TABLE 4: Design point performance of PT6A-67 turboprop 
Operation Conditions Static Standard 

Gas Generation rpm 39,000 

Power Turbine rpm 29,894 

Propeller rpm 1,700 

ITT (K) 1,113 

Shaft Power (SHP) 
1,726(Flat-rated to 

1200) 
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FC2 Compressor turbine erosion 

FC3 Power Turbine Erosion 

FC4 Comp. Fouling & Comp. turbine erosion 
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Comp. Fouling & Comp. turbine erosion & 

Power turbine erosion 
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3.2 Application example using Fuzzy Logic and NNs

An effective diagnostic system using the accurate base 

engine performance model of the PWC PT6A-67 turboprop 

engine, Fuzzy Logic and NNs has been proposed [58-59].  

Figure 9 shows the flow of the proposed diagnostic system.

The target engine shown in Fig. 10 will be used for a long 

endurance UAV in the high altitude operation. This engine is 

composed of the 4-stages axial compressor and the 1-stage 

centrifugal compressor, the reverse annular vaporizing 

combustor, the 1-stage axial compressor turbine, and the 

2-stages axial free power turbine with constant speed control.  

Moreover it has a 2 stage reduction gear box, and the power 

is flat-rated to 1200 hp. Table 4 illustrates the design point 

performance data of this engine [58]. 

In order to obtain the measured performance parameter 

changes which are input data for the diagnostic system, the 

base engine performance model to estimate accurately the 

clean engine performance is firstly. Therefore, this work 

generates inverse component maps of the PWC PT6A-67 

turboprop engine using limited performance deck data 

provided by the engine user and considering the high 

altitude engine behaviors. It then develops the base engine 

performance simulation program using the generated 

component maps shown in Fig. 11. 

The proposed fault diagnostic program shown in Fig. 12 

is composed of the Fuzzy Logic program for isolating faults 

from the monitored performance parameter changes and 

the Neural Network program for quantifying the isolated 

faults.
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Table 4. Design point performance of PT6A-67 turboprop
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 1 2 3 4 5 6 7 8 9 10

SHP          
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T5           
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Power turbine erosion 

 

 

 

 

 

 

 

compared with the analysis result 
obtained by Escher’s scheme, i.e., =0.66 
[9]. 
The analysis results for case 1, case 2, 
and case 3 are shown in Fig. 8, 
respectively. In this investigation, it was 
found that nonlinear GPA with the same 
interval performance degradation rate of 
independent parameters is less effective 
than linear GPA. However, the non-linear 
GPA method is considerably better than 
the linear GPA method when the 
performance degradation is large. In 
addition, it was found that results that are 
more accurate can be obtained if the 
larger number of the measurement 
parameters is selected. 
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However, when a specific set of 

measurement parameters is selected, the 

error can dramatically increase. 

Therefore, if we can properly select the 

measurement parameters, an economic 

and reliable fault detection can be realized. 
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TABLE 2: Causes of performance 

deterioration and degradation rates 
Case Source of deterioration Degradation rates

Case I 

Compressor fouling 
 = -2 %     

= -1% 

Comp. turbine erosion 
 = +1%   

  = -1% 

Power turbine erosion 
 = +1%     

= -1% 

Case II 

Compressor fouling 
 = -3%     

= -2% 

Comp. turbine erosion 
 = +2%    

 = -2% 

Power turbine erosion 
 = +2%    

 = -2% 

Case III 

Compressor fouling 
 = -5%    

 = -3% 

Comp. turbine erosion 
 = +3%    

 = -3% 

Power turbine erosion 
 = +3%     

= -3% 

 
TABLE 3. Selection of dependent variables 

 1 2 3 4 5 6 7 8 9 10

SH

P 
         

MF          

P2          

T2           

P3           

T3           

P4           

T4           

P5           

T5           

 
However, when a specific set of 

measurement parameters is selected, the 

error can dramatically increase. 

Therefore, if we can properly select the 

measurement parameters, an economic 

and reliable fault detection can be realized. 

 

 

 
Fig. 8.  RMS error in cases 1, 2, and 3 

using Linear GPA and Non-linear GPA 

(γ=1,γ=0.66) 
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Major component fault patterns are considered as single 

component fault patterns such as compressor fouling, 

compressor turbine erosion and power turbine erosion, 

and multiple component fault pattern combinations of 

two or three single component faults. Table 5 shows seven 

fault component pattern cases of the turboprop engine 

considered in this work.

Using the obtained measured performance parameter 

changes, the faulty components are isolated using Fuzzy 

Logic, and the isolated components are then quantified using 

the NNs learned by the learning data set. The verification is 

carried out by showing several test examples that show how 

well the proposed diagnostic system can detect component 

faults caused by intentionally implanted faults.

Through the following example, the proposed diagnostic 

program is verified. Measured parameter changes shown in 

Table 7 are obtained by implanted faults assumed as shown 

in Table 6 using the base engine model program. If the 

diagnostic program can identify the implanted faults with 

the measured parameter changes and trends, it is confirmed 

that this diagnostic program is verified.

Firstly, the measured parameter changes due to the 7 

component fault pattern cases are entered as input data of 

the Fuzzy Inference System program. This Fuzzy Inference 

System isolates 7 component fault pattern cases from input 

data though fuzzyfication and defuzzycation using the 

previously generated Fuzzy rules. Table 8 shows that results 

of the faulted components isolated by Fuzzy Inference 

System are given as input to the Neural Network diagnostic 

program learned by the training data base. Here, if the largest 

value among the fault pattern results calculated by giving 

measured parameter changes using the Fuzzy Inference 

System  approaches 1, the largest value becomes a possible 

component fault pattern. In Table 8, IFC1, i.e. input (or 

implanted) fault case 1, has 0.51 at OFC1, i.e. output fault 

case 1, which is the highest value among the 7 fault patterns; 

so this case has a high possibility of having a single fault with 

a contamination fault of the compressor. IFC7 has the highest 

value of 0.56 at pattern 7; therefore this case has a high 

 

 
Fig 11. a : Compressor Subsystem module, 

b : Base performance simulation program 

using SIMULINK 
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using MATLAB/SIMULINK 

 
TABLE 5: Considered component fault 

pattern cases 
Fault Cases 

(FC) 
Causes of faults 

FC1 Compressor fouling 

FC2 Compressor turbine erosion 

FC3 Power Turbine Erosion 

FC4 
Comp. Fouling & Comp. turbine 

erosion 

FC5 
Comp. Fouling & Power turbine 

erosion 

FC6 
Comp. turbine erosion & Power 

turbine erosion 

FC7 
Comp. Fouling & Comp. turbine 

erosion & Power turbine erosion 

 
 
TABLE 6: Implanted fault values (IFV) of 

engine major components 
    

IFV
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COMA 

(%) 

COEF

(%) 

HTMA

(%) 

HTEF

(%) 

PTMA 

(%) 

PTEF 

(%) 

FC1 -5 -3 0 0 0 0 

FC2 0 0 5 -3 0 0 

FC3 0 0 0 0 5 -3 

FC4 -4 -2 4 -2 0 0 

FC5 -4 -2 0 0 4 -2 

FC6 0 0 4 -2 4 -2 

FC7 -5 -5 5 -5 4 -4 

 
TABLE 7: Measured parameter changes 

due to implanted faults (%) 
MPC

FC 
∆ITT ∆EGT ∆MF ∆TRQ 

FC1 7.435 8.067 8.571 2.446 

FC2 7.817 7.027 14.367 8.231 

FC3 -3.051 -0.933 -4.408 -6.078 

FC4 14.385 14.072 21.714 10.588 

FC5 5.196 7.226 5.959 -0.762 

FC6 5.463 6.372 10.531 3.643 

FC7 19.986 21.518 27.755 10.456 

 
TABLE 8: Results of faulted components 

isolated by Fuzzy Inference System (IFC: 

Input fault cases, OFC: Output fault cases) 
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IFC 
1 2 3 4 5 6 7 

IFC1 0.51 0.09 0.08 0.08 0.43 0.26 0.09 

IFC2 0.47 0.58 0.08 0.08 0.09 0.45 0.09 

IFC3 0.09 0.09 0.68 0.08 0.09 0.08 0.09 

IFC4 0.09 0.41 0.08 0.57 0.09 0.08 0.43 

IFC5 0.40 0.09 0.20 0.08 0.56 0.08 0.09 

Fig. 11. ��Compressor Subsystem module, b : Base performance simula-
tion program using SIMULINK

 

 
Fig 11. a : Compressor Subsystem module, 

b : Base performance simulation program 

using SIMULINK 

 

 
Fig. 12. Proposed fault diagnostic program 

using MATLAB/SIMULINK 

 
TABLE 5: Considered component fault 

pattern cases 
Fault Cases 

(FC) 
Causes of faults 

FC1 Compressor fouling 

FC2 Compressor turbine erosion 

FC3 Power Turbine Erosion 

FC4 
Comp. Fouling & Comp. turbine 

erosion 

FC5 
Comp. Fouling & Power turbine 

erosion 

FC6 
Comp. turbine erosion & Power 

turbine erosion 

FC7 
Comp. Fouling & Comp. turbine 

erosion & Power turbine erosion 

 
 
TABLE 6: Implanted fault values (IFV) of 

engine major components 
    

IFV

FC   

COMA 

(%) 

COEF

(%) 

HTMA

(%) 

HTEF

(%) 

PTMA 

(%) 

PTEF 

(%) 

FC1 -5 -3 0 0 0 0 

FC2 0 0 5 -3 0 0 

FC3 0 0 0 0 5 -3 

FC4 -4 -2 4 -2 0 0 

FC5 -4 -2 0 0 4 -2 

FC6 0 0 4 -2 4 -2 

FC7 -5 -5 5 -5 4 -4 

 
TABLE 7: Measured parameter changes 

due to implanted faults (%) 
MPC

FC 
∆ITT ∆EGT ∆MF ∆TRQ 

FC1 7.435 8.067 8.571 2.446 

FC2 7.817 7.027 14.367 8.231 

FC3 -3.051 -0.933 -4.408 -6.078 

FC4 14.385 14.072 21.714 10.588 

FC5 5.196 7.226 5.959 -0.762 

FC6 5.463 6.372 10.531 3.643 

FC7 19.986 21.518 27.755 10.456 

 
TABLE 8: Results of faulted components 

isolated by Fuzzy Inference System (IFC: 

Input fault cases, OFC: Output fault cases) 

OFC

IFC 
1 2 3 4 5 6 7 

IFC1 0.51 0.09 0.08 0.08 0.43 0.26 0.09 

IFC2 0.47 0.58 0.08 0.08 0.09 0.45 0.09 

IFC3 0.09 0.09 0.68 0.08 0.09 0.08 0.09 

IFC4 0.09 0.41 0.08 0.57 0.09 0.08 0.43 

IFC5 0.40 0.09 0.20 0.08 0.56 0.08 0.09 
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Case Source of deterioration Degradation rates 
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= -2% 
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Compressor fouling  = -5%    
= -3% 

Comp. turbine erosion  = +3%    
= -3% 

Power turbine erosion  = +3%    
= -3% 
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Fig 13. Results of faulted components 

quantified by Neural Network diagnostic 

program 

 

As shown in Fig. 13, the proposed 

Fuzzy-NNs diagnostic program isolates 

exactly the faulted components for all of 

the 7 fault pattern cases, but the 

degradation results of the isolated faulted 

components quantified by the program 

have some errors. The error will be 

decreased by learning with more various 

case learning data and best selection of 

measured parameters 

 

3.3 Application example using GA 
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for a fault diagnostic application example 

using GA [18] is a AE3007H 2 shaft 
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possibility of being a multi fault case with a contamination 

fault of the compressor, erosion of compressor turbine 

and erosion of power turbine. As explained above, IFC2, 

IFC3, IFC4, IFC5, and IFC6 also have highest values at fault 

patterns 2, 3, 4, 5 and 6, respectively.

Therefore, it is confirmed that the isolating fault patterns 

obtained from the fault monitoring program are the same as 

the implanted fault patterns.

In the next step, the measured performance parameter 

changes of the faulted components isolated by the FIS are 

given as input to the NN diagnostic program learned by the 

training data base.

Figure 13 shows the degraded characteristic values of 

the single and multiple faulted components found by the 

proposed NN diagnostic program. In the figures, cases 1~7 

refer to implanted degradations , and the N.N. refers to the 

identified degradations of each fault pattern by the NNs’ 

diagnostic program. 

As shown in Fig. 13, the proposed Fuzzy-NNs diagnostic 

program isolates exactly the faulted components for all of 

the 7 fault pattern cases, but the degradation results of the 

isolated faulted components quantified by the program 

have some errors.  The error will be decreased by learning 

with more various case learning data and best selection of 

measured parameters

3.3 Application example using GA

The performance modeling engine for a fault diagnostic 

application example using GA [18] is a AE3007H 2 shaft 

mixed flow type high bypass turbofan engine manufactured 

by Rolls-Royce/Allison as shown in  Fig. 14, and  is composed 

of a 1 stage axial fan with a bypass ratio of 5, a 14 stage axial 

high pressure compressor with a pressure ratio of 23, a 2 

stage axial high pressure turbine and a 3 stage axial low 

pressure turbine. The engine produces 36.9 KN at take-off 

condition. Figure 1 shows the cut-down view of the AE3007H 

turbofan engine [60].

In order to diagnose the gas turbine engine, the implanted 

faults are first classified, and a set of the measuring 

parameters to effectively detect the implanted faults are then 

selected. Depending on the numbers and types of measuring 

parameters, the precision of the diagnostic results is changed.

In order to evaluate the precision of the detected faults the 

following Root Mean Square (RMS) error formula is used. 

In order to validate the condition monitoring analysis 

results by the linear GPA method, the non-linear GPA 

method and the GA method, known fault data must be  

needed. Either the real faulted engine data or the simulating 

faulted engine data are used. The use of real faulted engine 

data is preferred, but it is difficult to obtain all types of real 

faulted engine data as well as  data without noise and bias. 

Therefore the simulating faulted engine data are generally 

used to verify the developing condition monitoring system. 

This work also uses the simulating faulted engine data. 

In the condition monitoring analysis, the single faulted 

component cases and the multiple faulted component cases 

are considered with and without measuring noise and bias. 

The number of implanted independent parameters 

must be less than the number of measuring parameters, 

and the considered faults are the compressor fouling case 

and the turbine erosion case. The degradation quantities of 

implanted faults for the analysis are shown in Table 9.

Compressor fouling results in reduced flow capacity and 

efficiency due to the reduction of flow area, and turbine 

erosion increases the nozzle area and decreases flow 

capacity and efficiency [2]. 

The selected measuring parameters are the inlet and outlet 

pressures and temperatures of the high pressure compressor, 

high pressure turbine, and the low pressure turbines and fuel 

flow. Here the pressure measuring parameter is related to 

the non-dimensional flow parameter, and the combination 

of pressure and temperature measuring parameters is 

related to the efficiency. The greater number of measuring 

parameters and the more precise diagnostic results are 

expected, but the measuring sensor error increase and the 

measuring cost increase [61-64].

Figure 15 (a) shows the diagnostic analysis results of single 

fault cases without sensor noise and biases. The analysis 

results using the linear GPA method have very low precision 

even in the case of low degradation, and the diagnostic 

RMS error of the high pressure compressor fouling case 
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TABLE 9: Implanted faults for compressor 

fouling and turbine erosion 
Compressor fouling Turbine Erosion 

Fan η -1.5 HPT η -3 

Fan Γ -2.0 HPT Γ +4 

HPC η -1.5 LPT η -3 

HPC Γ -2.0 LPT Γ +4 
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are the inlet and outlet pressures and 

temperatures of the high pressure 

compressor, high pressure turbine, and 

the low pressure turbines and fuel flow. 

Here, the pressure measuring parameter 

is related to the non-dimensional flow 

parameter, and the combination of 

pressure and temperature measuring 

parameters is related to the efficiency. 

The greater number of measuring 

parameters and the more precise 

diagnostic results are expected, but the 

measuring sensor error increase and the 

measuring cost increase [61-64]. 
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14-021 Table 

 
Table 1. KC950 top level requirements 

Parameter Target value 

Passengers 95 

Seat pitch 32inch (standard) 

Cargo 6.0 ft3/passenger 

Range 1,000nm 

Cruise speed M0.6 (360knot) 

 
Table 2. Competing aircraft specifications 

Parameter Q400 ATR72 

 

Introduction 2000 1989 

Passengers 74@31″ 68@31″ 
Range 

(typical pax) 1,125nm 890nm 

Cruise speed 360knots 276knots 

MTOW 64,500lb 49,600lb 

 
Table 3. Competing aircraft fuselage cross section dimensions (unit: inch) 

Parameter CSeries SSJ100 Q400 ATR72 CRJ900 E190 MRJ90 
Cabin abreast 2+3 2+3 2+2 2+2 2+2 2+2 2+2 

Fuselage 
width 141.1 137.8 106.0 112.8 105.9 119.0 114.2 

Fuselage 
height 141.1 137.8 101.0 106.3 105.9 132.0 116.5 

Seat width 18.5 18.2 17.3 17.3 17.0 18.25 18.5 
Aisle width 20.0 20.0 15.8 18.0 16.0 19.75 18.0 
Aisle height 83.9 83.5 76.8 75.2 74.4 79.0 80.0 
Underfloor 

cargo height 42.5 40.2 - - 22.0 37.0 - 
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approaches about 2. The analysis results using the non-

linear GPA method have more precision in all the single 

fault cases. However the analysis results using the linear GA 

method have a bit lower precision in all the single fault cases. 

Figure 15(b) shows the diagnostic analysis results of single 

fault cases with sensor noise and biases to consider the real 

operating condition. According to the analysis results with 

noise and biases, the GA method has the lowest RMS error 

among the three methods. The linear GPA method has an  

RMS error of 9 in the fan fouling case, but the non-linear 

method has higher RMS errors than the linear GPA methods 

at other single fault cases. Moreover the GPA methods cannot 

detect the faults if the noise significantly increases. 

Figure 15(c) shows the diagnostic analysis results of 

multiple fault cases without sensor noise and biases. 

According to the analysis results, the linear GPA method has 

very high RMS errors compared with the non-linear method 

and GA method; so it is found that the linear GPA method is 

very weak for use in the multiple fault cases. The non-linear 

GPA method has good results except for the fan and high 

pressure turbine multiple fault cases. 

Figure 15(d) shows the diagnostic analysis results of 

multiple fault cases with sensor noise and biases. According 

to the analysis results with sensor noise and biases, the 

RMS errors of both the linear GPA method and the non-

linear GPA method increase, while the GA method has very 

low RMS errors compared to the GPA methods at all types 

of fault cases. This means that the GA method is a reliable 

acceptable diagnostic method for the condition monitoring 

of an AE3007E turbo fan engine.

4. Concluding Remarks

An overview of most advanced gas turbine health 

monitoring methods including GPA, KF, NNs, the BBN, GA, 

Expert System and Fuzzy Logic was presented. Thorough 

a number of practical gas turbine health monitoring 

application examples using the GPA and artificial intelligent 

methods including fuzzy logic, and the NNs and GA which 

were developed by the author, verifications and evaluations 

including the advantages and disadvantages of each 

diagnostic method were discussed.

The GPA method is a relatively simple artificial intelligent 

method, but it has low accuracy which is greatly influenced 

by measurement parameter selection. The nonlinear GPA 

improves the accuracy greatly, but computation time 

increases. However if noise or bias exists, the GPA can no 
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Fig. 15. Component Fault diagnostics 
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4. Concluding Remarks 
 

An overview of most advanced gas 

turbine health monitoring methods 

including GPA, KF, NNs, the BBN, GA, 

Expert System, and Fuzzy Logic was 

presented. Thorough a number of 

practical gas turbine health monitoring 

application examples using the GPA and 

artificial intelligent methods including 

fuzzy logic, and the NNs and GA which 

were developed by the author, 

verifications and evaluations including the 

advantages and disadvantages of each 

diagnostic method were discussed. 

 The GPA method is a relatively 

simple artificial intelligent method, but it 

has low accuracy which is greatly 

influenced by measurement parameter 

selection. The nonlinear GPA improves 

the accuracy greatly, but computation 

time increases. However, if noise or bias 

exists, the GPA can no longer be used to 

diagnose the engine faults. Moreover, the 

GPA cannot isolate clearly the component 

faults. 

In order to solve the GPA’s 

problems, Fuzzy-NNs are an effective 

artificial intelligent method. Fuzzy logic 

can isolate effectively the component 

faults and the NNs can quantify the 

isolated component’s fault size. However, 

this method has a relatively complex 

structure and has a relatively long 

computation time. Moreover, it is 

problematic if noise or bias occurs. 

The GA can accurately diagnose the 

component fault, even if both noise and 

bias occur. However, this method is 

greatly influenced by the engine 

simulation model and fitness factors, and 

requires a relatively long computation 

time and model complexity. 
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longer be used to diagnose the engine faults. Moreover, the 

GPA cannot isolate clearly the component faults.

In order to solve the GPA’s problems, Fuzzy-NNs are an 

effective artificial intelligent method. Fuzzy logic can isolate 

effectively the component faults and the NNs can quantify 

the isolated component’s fault size. However, this method 

has a relatively complex structure and has a relatively long 

computation time. Moreover, it is problematic if noise or bias 

occurs.

The GA can accurately diagnose the component fault, 

even if both noise and bias occur. However, this method 

is greatly influenced by the engine simulation model and 

fitness factors, and requires a relatively long computation 

time and model complexity.
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